Mapping the capacity of watersheds to regulate floods

Beatriz Mogollón¹ and Paul Angermeier²

¹MS Candidate, Department of Fish and Wildlife Conservation, Virginia Tech

² U.S. Geological Survey, Virginia Cooperative Fish and Wildlife Research Unit, Virginia Tech

UCOWR-NIWR-CUAHSI Conference June 18, 2014 Medford, MA What do we mean by capacity?

Why do we care about regulating inland floods?

Landscapes can regulate floods < 10-year flood

Biophysical features that regulate floods

The transition between the previous slide and this one seemed very rough.

Technological features that regulate floods, and water

What landscape processes regulate floods?

12+ papers on mapping flood regulation as an ES

- Technological features not included
- Role of landscape features not assessed with long-term hydrologic records

Study objectives

- 1) Identify landscape indicators that regulate floods
- 2) Assess the relative importance of each indicator in explaining flood metrics
- Map technological and biophysical flood regulation capacities based on indicatorimportance
- Assess how observed flooding respond to biophysical and technological regulation capacity

8 watersheds

Piedmont of North Carolina

Drainage area $\leq 80 \text{ km}^2$

Urban (60-100%)

Forest (0-34%)

Mean Rainfall 1060 mm yr⁻¹

Sandy/Loamy soils 12-77%

Spatially explicit landscape indicators that regulate floods

*ET, BMP, AWB change through time

Derive indicator importance factors based on flood metrics

Generalized Linear Mixed Model (GLMM) set up:

RESPONSE		EXPLANATORY
Magnitude —	— Biophysical Indicators —	Evapotranspiration Rate (ET), Saturated Hydraulic Conductivity (Ksat), Available Water Storage (AWS), Slope, % Streams
Magnitude —	— Technological Indicators —	 Best Management Practices (% BMPs) and Artificial Waterbodies (% AWBs)
Duration —	 Biophysical Indicators 	Evapotranspiration Rate (ET), Saturated Hydraulic Conductivity (Ksat), Available Water Storage (AWS), Slope, % Streams
Duration —	 Technological Indicators 	 Best Management Practices (% BMPs) and Artificial Waterbodies (% AWBs)

2b

Derive indicator importance factors based on flood metrics

GLMM example -Response Variable: Magnitude Random Effect: Station ID Fixed Effects: Mean annual precipitation Technological indicators (2)

Model	Variables	# parameters	AICc	AICc weight
1	Intercept only	1	381.16	0.02
2	Int, AWB	2	375.17	0.42
3	Int, BMP	2	375.19	0.41
4	Int, AWB, BMP	3	377.25	0.15

- Derive AIC
- Calculate AIC weight
- Sum weight for each indicator

Sum BMP weight is 0.56

Conducted this process for B indicators and magnitude, and duration – B and T

2_c

Derive indicator importance factors based on flood metrics

Components	Indicators	Magnitude		Duration	
		Unscaled	Scaled	Unscaled	Scaled
	ET	0.37	0.62	0.95	1.00
	Ksat	0.32	0.54	0.36	0.38
Biophysical	AWS	0.30	0.50	0.51	0.54
	Slope	0.42	0.70	0.31	0.33
	% Stream	0.59	1.00	0.57	0.60
Technological	% BMP	0.56	0.99	0.49	0.76
	% AWB	0.57	1.00	0.64	1.00

3_a

Map Flood Regulation Capacities

Standardize indicators in GIS from 0 to 1

 $\frac{(X - X_{min})}{(X_{max} - X_{min})}$

Magnitude-derived capacity

Duration-derived capacity

4 Assess how capacities respond to flood metrics

Floods are responding as expected based on what we know about the landscape

In this study, we

Included technological features

Derived indicator-importance factors based on flood metrics

Mapped technological and biophysical flood regulation capacity

Transferability and limitations

- Importance-values are location-specific
- Long-term hydrologic records
- Publicly available databases

Time

Thank you

Acknowledgments

- Dr. Amy Villamagna
- Dr. Emmanuel Frimpong
- Dr. Glenn Moglen
- Dr. Kurt Stephenson

Funding

- PEO International Peace Scholarship
- Department of Fish and Wildlife Conservation, Virginia Tech
- Leo Bourassa Scholarship, The Virginia Lakes and Watersheds Association
- Virginia Tech Graduate Student Assembly Travel Fund Program
- UCOWR-NIWR-CUAHSI Conference Student Support Award

Beatriz (Tiz) Mogollón <u>mogollon@vt.edu</u> <u>tizmogollon.weebly.com</u>